Exercise 2G

1 a i Start with $y=|x|$

$y=4|x|$ is a vertical stretch by scale factor 4

$y=4|x|-3$ is a horizontal
translation by -3

ii The range is $\mathrm{f}(x) \geq-3$
b I Start with $y=|x|$

$y=|x+2|$ is a horizontal translation by -2
$y=\frac{1}{3}|x+2|$ is a vertical stretch by scale factor $\frac{1}{3}$

$y=\frac{1}{3}|x+2|-1$ is a vertical translation by -1

ii The range is $\mathrm{f}(x) \geq-1$

1 c i Start with $y=|x|$

$y=|x-1|$ is a horizontal translation by +1

$y=-2|x-1|$ is a vertical stretch by scale factor -2

$y=-2|x-1|+6$ is a vertical
translation by +6

1 c ii The range is $\mathrm{f}(x) \leq 6$
d i Start with $y=|x|$

$y=-\frac{5}{2}|x|$ is a vertical stretch by scale factor $-\frac{5}{2}$

$y=-\frac{5}{2}|x|+4$ is a horizontal

d ii The range is $\mathrm{f}(x) \leq 4$

2 a Start with $y=|x|$
$y=|x+4|$ is a horizontal translation of -4

$y=2|x+4|$ is a vertical stretch scale factor 2

$y=2|x+4|-5$ is a vertical translation of -5

2 b The region where $y \geq \mathrm{p}(x)$ is the region which lies on and above the line $y=2|x+4|-5$

3 a Start with $y=|x|$ $y=-3|x|$ is a vertical stretch scale factor -3

$y=-3|x|+6$ is a vertical
translation of +6

3 b The region where $y<\mathrm{q}(x)$ is the region which lies below the line $y=-3|x|+6$

4 a Start with $y=|x|$
$y=|x+6|$ is a horizontal translation of -6

$y=4|x+6|$ is a vertical stretch
scale factor 4

$y=4|x+6|+1$ is a vertical
translation of +1

4 b The range is $\mathrm{f}(x) \geq 1$
c At one point of intersection:

$$
\begin{aligned}
-4(x+6)+1 & =-\frac{1}{2} x+1 \\
-4 x-23 & =-\frac{1}{2} x+1 \\
-8 x-46 & =-x+2 \\
-48 & =7 x \\
x & =-\frac{48}{7}
\end{aligned}
$$

At other point of intersection:

$$
\begin{aligned}
4(x+6)+1 & =-\frac{1}{2} x+1 \\
4 x+25 & =-\frac{1}{2} x+1 \\
8 x+50 & =-x+2 \\
9 x & =-48 \\
x & =-\frac{16}{3}
\end{aligned}
$$

So the solutions are

$$
x=-\frac{48}{7} \text { and } x=-\frac{16}{3}
$$

5 a Start with $y=|x|$ $y=|x-2|$ is a horizontal translation of +2

$y=-\frac{5}{2}|x-2|$ is a vertical stretch scale factor $-\frac{5}{2}$

$y=-\frac{5}{2}|x-2|+7$ is a vertical
translation of +7

5 c At one point of intersection:

$$
\begin{aligned}
-\frac{5}{2}(x-2)+7 & =x+1 \\
-\frac{5}{2} x+12 & =x+1 \\
-5 x+24 & =2 x+2 \\
22 & =7 x \\
x & =\frac{22}{7}
\end{aligned}
$$

At other point of intersection:

$$
\begin{aligned}
\frac{5}{2}(x-2)+7 & =x+1 \\
\frac{5}{2} x+2 & =x+1 \\
5 x+4 & =2 x+2 \\
3 x & =-2 \\
x & =-\frac{2}{3}
\end{aligned}
$$

So the solutions are

$$
x=-\frac{2}{3} \text { and } x=\frac{22}{7}
$$

b The range is $\mathrm{g}(x) \leq 7$

6 For the equation $\mathrm{m}(x)=\mathrm{n}(x)$ to have no real roots, it must be the case that $y=\mathrm{m}(x)$ and $y=\mathrm{n}(x)$ do not intersect.

The least value of

$$
\begin{aligned}
y=\mathrm{n}(x)=3|x-4|+6 & \text { is } \\
y & =6 \text { when } x=4
\end{aligned}
$$

Hence, we need $\mathrm{m}(4)<6$ to avoid intersection

$$
\text { So }-2(4)+k<6 ~ 子 \begin{array}{r}
k \\
-8+k<6 \\
k<14
\end{array}
$$

7 For the equation $\mathrm{s}(x)=\mathrm{t}(x)$ to have exactly one real root, it must be the case that $y=\mathrm{s}(x)$ and $y=\mathrm{t}(x)$ intersect at the minimum point of $\mathrm{t}(x)$.

The least value of
$y=\mathrm{t}(x)=2|x+b|-8$ is

$$
y=-8 \text { when } x=-b
$$

Hence, we need $s(-b)=-8$ to ensure one intersection

$$
\begin{aligned}
\Rightarrow-8 & =-10-(-b) \\
b & =2
\end{aligned}
$$

8 a The range is $\mathrm{h}(x) \geq-7$
b $\mathrm{h}(x)$ is many-to-one, therefore $\mathrm{h}^{-1}(x)$ would be one-to-many, and so would not be a function.
c At one point of intersection:

$$
\begin{aligned}
-\frac{2}{3}(x-1)-7 & =-6 \\
2 x-2+21 & =18 \\
2 x & =-1 \\
x & =-\frac{1}{2}
\end{aligned}
$$

At other point of intersection:

$$
\begin{aligned}
& \frac{2}{3}(x-1)-7=-6 \\
& 2 x-2-21=-18 \\
& 2 x=5 \\
& x=\frac{5}{2}
\end{aligned}
$$

So the solutions are
$x=-\frac{1}{2}$ and $x=\frac{5}{2}$
$h(x)<-6$ between the two points of intersection, so the solution to the inequality $\mathrm{h}(x)<-6$ is

$$
-\frac{1}{2}<x<\frac{5}{2}
$$

d Since $\mathrm{h}(x) \geq-7$ and $\mathrm{h}(1)=-7$, then for the equation $\mathrm{h}(x)=\frac{2}{3} x+k$ to have no solutions, we require

$$
\begin{aligned}
\frac{2}{3}(1)+k & <-7 \\
\Rightarrow k & <-\frac{23}{3}
\end{aligned}
$$

9 a We can write has

$$
\mathrm{h}(x)= \begin{cases}a+2(x+3), & x \leq-3 \\ a-2(x+3), & x \geq-3\end{cases}
$$

The line which has gradient -2 and passes through $(0,4)$ is $y=-2 x+4$

So, for $x \geq-3$

$$
\begin{aligned}
-2(x+3)+a & =-2 x+4 \\
-2 x-6+a & =-2 x+4 \\
a & =10
\end{aligned}
$$

b At $P, \mathrm{~h}(x)=10$ (from part a)

$$
\begin{aligned}
& \text { So } \quad 10=10-2(x+3) \\
& -2 x-6=0 \\
& x=-3 \\
& \text { At } Q, \mathrm{~h}(x)=0 \\
& \text { So } 0=10-2(x+3) \\
& 4-2 x=0 \\
& x=2
\end{aligned}
$$

$P(-3,10)$ and $Q(2,0)$
c $\mathrm{h}(x)=\frac{1}{3} x+6$
At one point of intersection:

$$
\begin{aligned}
10-2(x+3) & =\frac{1}{3} x+6 \\
4-2 x & =\frac{1}{3} x+6 \\
12-6 x & =x+18 \\
7 x & =-6 \\
x & =-\frac{6}{7}
\end{aligned}
$$

At other point of intersection:

$$
\begin{aligned}
10+2(x+3) & =\frac{1}{3} x+6 \\
16+2 x & =\frac{1}{3} x+6 \\
48+6 x & =x+18 \\
5 x & =-30 \\
x & =-6
\end{aligned}
$$

So the solutions are $x=-6$ and $x=-\frac{6}{7}$

10 a The range of $\mathrm{m}(x)$ is $\mathrm{m}(x) \leq 7$
b $\mathrm{m}(x)=\frac{3}{5} x+2$
At one point of intersection:

$$
\begin{aligned}
-4(x+3)+7 & =\frac{3}{5} x+2 \\
-4 x-5 & =\frac{3}{5} x+2 \\
-20 x-25 & =3 x+10 \\
-23 x & =35 \\
x & =-\frac{35}{23}
\end{aligned}
$$

At other point of intersection:

$$
\begin{aligned}
4(x+3)+7 & =\frac{3}{5} x+2 \\
4 x+19 & =\frac{3}{5} x+2 \\
20 x+95 & =3 x+10 \\
17 x & =-85 \\
x & =-5
\end{aligned}
$$

So the solutions are $x=-5$ and

$$
x=-\frac{35}{23}
$$

c For two distinct roots, there are two points of intersection, so $\mathrm{m}(x)<7$. Therefore, $k<7$.

Challenge

1 a At A :

$$
\begin{aligned}
-2(x-4)-8 & =x-9 \\
-2 x & =x-9 \\
-3 x & =-9 \\
x & =3
\end{aligned}
$$

$y=3-9=-6$
At B :
$2(x-4)-8=x-9$
$2 x-16=x-9$
$x=7$
$y=7-9=-2$
$A(3,-6)$ and $B(7,-2)$
b Taking the shaded triangle R and enclosing it in a rectangle looks like:

2 At the first point of intersection:

$$
\begin{aligned}
x-3+10 & =-2(x-3)+2 \\
x+7 & =-2 x+8 \\
3 x & =1 \\
x & =\frac{1}{3}
\end{aligned}
$$

At the other point of intersection:

$$
\begin{aligned}
-(x-3)+10 & =2(x-3)+2 \\
-x+13 & =2 x-4 \\
-3 x & =-17 \\
x & =\frac{17}{3}
\end{aligned}
$$

Maximum point of $\mathrm{f}(x)$ is

$$
\mathrm{f}(x)=10 \text { when } x=3 \text {, so at }(3,10)
$$

Minimum point of $\mathrm{g}(x)$ is
$\mathrm{g}(x)=2$ when $x=3$, so at $(3,2)$
Area of a kite $=\frac{1}{2} \times$ width \times height

$$
\begin{aligned}
& =\frac{1}{2} \times\left(\frac{17}{3}-\frac{1}{3}\right) \times(10-2) \\
& =\frac{1}{2} \times \frac{16}{3} \times 8 \\
& =\frac{64}{3} \text { units }^{2}
\end{aligned}
$$

$R=(4 \times 6)-\left(\frac{1}{2} \times 4 \times 4\right)-\left(\frac{1}{2} \times 6 \times 3\right)-\left(\frac{1}{2} \times 2 \times 1\right)$
$R=24-8-9-1$
$R=6$ units 2

